Writing Programs
How to transfer SOL in a program
Your Solana Program can transfer lamports from one account to another without 'invoking' the System program. The fundamental rule is that your program can transfer lamports from any account owned by your program to any account at all.
The recipient account does not have to be an account owned by your program.
/// Transfers lamports from one account (must be program owned)
/// to another account. The recipient can by any account
fn transfer_service_fee_lamports(
from_account: &AccountInfo,
to_account: &AccountInfo,
amount_of_lamports: u64,
) -> ProgramResult {
// Does the from account have enough lamports to transfer?
if **from_account.try_borrow_lamports()? < amount_of_lamports {
return Err(CustomError::InsufficientFundsForTransaction.into());
}
// Debit from_account and credit to_account
**from_account.try_borrow_mut_lamports()? -= amount_of_lamports;
**to_account.try_borrow_mut_lamports()? += amount_of_lamports;
Ok(())
}
/// Primary function handler associated with instruction sent
/// to your program
fn instruction_handler(accounts: &[AccountInfo]) -> ProgramResult {
// Get the 'from' and 'to' accounts
let account_info_iter = &mut accounts.iter();
let from_account = next_account_info(account_info_iter)?;
let to_service_account = next_account_info(account_info_iter)?;
// Extract a service 'fee' of 5 lamports for performing this instruction
transfer_service_fee_lamports(from_account, to_service_account, 5u64)?;
// Perform the primary instruction
// ... etc.
Ok(())
}
How to get clock in a program
Getting a clock can be done in two ways
- Passing
SYSVAR_CLOCK_PUBKEY
into an instruction - Accessing Clock directly inside an instruction.
It is nice to know both the methods, because some legacy programs still expect the SYSVAR_CLOCK_PUBKEY
as an account.
Passing Clock as an account inside an instruction
Let's create an instruction which receives an account for initializing and the sysvar pubkey
use borsh::{BorshDeserialize, BorshSerialize};
use solana_program::{
account_info::{next_account_info, AccountInfo},
clock::Clock,
entrypoint,
entrypoint::ProgramResult,
msg,
pubkey::Pubkey,
sysvar::Sysvar,
};
entrypoint!(process_instruction);
#[derive(BorshSerialize, BorshDeserialize, Debug)]
pub struct HelloState {
is_initialized: bool,
}
// Accounts required
/// 1. [signer, writable] Payer
/// 2. [writable] Hello state account
/// 3. [] Clock sys var
pub fn process_instruction(
_program_id: &Pubkey,
accounts: &[AccountInfo],
_instruction_data: &[u8],
) -> ProgramResult {
let accounts_iter = &mut accounts.iter();
// Payer account
let _payer_account = next_account_info(accounts_iter)?;
// Hello state account
let hello_state_account = next_account_info(accounts_iter)?;
// Clock sysvar
let sysvar_clock_pubkey = next_account_info(accounts_iter)?;
let mut hello_state = HelloState::try_from_slice(&hello_state_account.data.borrow())?;
hello_state.is_initialized = true;
hello_state.serialize(&mut &mut hello_state_account.data.borrow_mut()[..])?;
msg!("Account initialized :)");
// Type casting [AccountInfo] to [Clock]
let clock = Clock::from_account_info(&sysvar_clock_pubkey)?;
// Getting timestamp
let current_timestamp = clock.unix_timestamp;
msg!("Current Timestamp: {}", current_timestamp);
Ok(())
}
let clock = Clock::from_account_info(&sysvar_clock_pubkey)?;
let current_timestamp = clock.unix_timestamp;
Now we pass the clock's sysvar public address via the client
import {
clusterApiUrl,
Connection,
Keypair,
LAMPORTS_PER_SOL,
PublicKey,
SystemProgram,
SYSVAR_CLOCK_PUBKEY,
Transaction,
TransactionInstruction,
} from "@solana/web3.js";
(async () => {
const programId = new PublicKey(
"77ezihTV6mTh2Uf3ggwbYF2NyGJJ5HHah1GrdowWJVD3"
);
const connection = new Connection(clusterApiUrl("devnet"), "confirmed");
// Airdropping 1 SOL
const feePayer = Keypair.generate();
await connection.confirmTransaction(
await connection.requestAirdrop(feePayer.publicKey, LAMPORTS_PER_SOL)
);
// Hello state account
const helloAccount = Keypair.generate();
const accountSpace = 1; // because there exists just one boolean variable
const rentRequired = await connection.getMinimumBalanceForRentExemption(
accountSpace
);
// Allocating space for hello state account
const allocateHelloAccountIx = SystemProgram.createAccount({
fromPubkey: feePayer.publicKey,
lamports: rentRequired,
newAccountPubkey: helloAccount.publicKey,
programId: programId,
space: accountSpace,
});
// Passing Clock Sys Var
const passClockIx = new TransactionInstruction({
programId: programId,
keys: [
{
isSigner: true,
isWritable: true,
pubkey: feePayer.publicKey,
},
{
isSigner: false,
isWritable: true,
pubkey: helloAccount.publicKey,
},
{
isSigner: false,
isWritable: false,
pubkey: SYSVAR_CLOCK_PUBKEY,
},
],
});
const transaction = new Transaction();
transaction.add(allocateHelloAccountIx, passClockIx);
const txHash = await connection.sendTransaction(transaction, [
feePayer,
helloAccount,
]);
console.log(`Transaction succeeded. TxHash: ${txHash}`);
})();
(async () => {
const programId = new PublicKey(
"77ezihTV6mTh2Uf3ggwbYF2NyGJJ5HHah1GrdowWJVD3"
);
// Passing Clock Sys Var
const passClockIx = new TransactionInstruction({
programId: programId,
keys: [
{
isSigner: false,
isWritable: true,
pubkey: helloAccount.publicKey,
},
{
is_signer: false,
is_writable: false,
pubkey: SYSVAR_CLOCK_PUBKEY,
},
],
});
const transaction = new Transaction();
transaction.add(passClockIx);
const txHash = await connection.sendTransaction(transaction, [
feePayer,
helloAccount,
]);
console.log(`Transaction succeeded. TxHash: ${txHash}`);
})();
Accessing Clock directly inside an instruction
Let's create the same instruction, but without expecting the SYSVAR_CLOCK_PUBKEY
from the client side.
use borsh::{BorshDeserialize, BorshSerialize};
use solana_program::{
account_info::{next_account_info, AccountInfo},
clock::Clock,
entrypoint,
entrypoint::ProgramResult,
msg,
pubkey::Pubkey,
sysvar::Sysvar,
};
entrypoint!(process_instruction);
#[derive(BorshSerialize, BorshDeserialize, Debug)]
pub struct HelloState {
is_initialized: bool,
}
// Accounts required
/// 1. [signer, writable] Payer
/// 2. [writable] Hello state account
pub fn process_instruction(
_program_id: &Pubkey,
accounts: &[AccountInfo],
_instruction_data: &[u8],
) -> ProgramResult {
let accounts_iter = &mut accounts.iter();
// Payer account
let _payer_account = next_account_info(accounts_iter)?;
// Hello state account
let hello_state_account = next_account_info(accounts_iter)?;
// Getting clock directly
let clock = Clock::get()?;
let mut hello_state = HelloState::try_from_slice(&hello_state_account.data.borrow())?;
hello_state.is_initialized = true;
hello_state.serialize(&mut &mut hello_state_account.data.borrow_mut()[..])?;
msg!("Account initialized :)");
// Getting timestamp
let current_timestamp = clock.unix_timestamp;
msg!("Current Timestamp: {}", current_timestamp);
Ok(())
}
let clock = Clock::get()?;
let current_timestamp = clock.unix_timestamp;
The client side instruction, now only needs to pass the state and payer accounts.
import {
clusterApiUrl,
Connection,
Keypair,
LAMPORTS_PER_SOL,
PublicKey,
SystemProgram,
Transaction,
TransactionInstruction,
} from "@solana/web3.js";
(async () => {
const programId = new PublicKey(
"4ZEdbCtb5UyCSiAMHV5eSHfyjq3QwbG3yXb6oHD7RYjk"
);
const connection = new Connection(clusterApiUrl("devnet"), "confirmed");
// Airdropping 1 SOL
const feePayer = Keypair.generate();
await connection.confirmTransaction(
await connection.requestAirdrop(feePayer.publicKey, LAMPORTS_PER_SOL)
);
// Hello state account
const helloAccount = Keypair.generate();
const accountSpace = 1; // because there exists just one boolean variable
const rentRequired = await connection.getMinimumBalanceForRentExemption(
accountSpace
);
// Allocating space for hello state account
const allocateHelloAccountIx = SystemProgram.createAccount({
fromPubkey: feePayer.publicKey,
lamports: rentRequired,
newAccountPubkey: helloAccount.publicKey,
programId: programId,
space: accountSpace,
});
const initIx = new TransactionInstruction({
programId: programId,
keys: [
{
isSigner: true,
isWritable: true,
pubkey: feePayer.publicKey,
},
{
isSigner: false,
isWritable: true,
pubkey: helloAccount.publicKey,
},
],
});
const transaction = new Transaction();
transaction.add(allocateHelloAccountIx, initIx);
const txHash = await connection.sendTransaction(transaction, [
feePayer,
helloAccount,
]);
console.log(`Transaction succeeded. TxHash: ${txHash}`);
})();
(async () => {
const programId = new PublicKey(
"4ZEdbCtb5UyCSiAMHV5eSHfyjq3QwbG3yXb6oHD7RYjk"
);
// No more requirement to pass clock sys var key
const initAccountIx = new TransactionInstruction({
programId: programId,
keys: [
{
isSigner: false,
isWritable: true,
pubkey: helloAccount.publicKey,
},
],
});
const transaction = new Transaction();
transaction.add(initAccountIx);
const txHash = await connection.sendTransaction(transaction, [
feePayer,
helloAccount,
]);
console.log(`Transaction succeeded. TxHash: ${txHash}`);
})();
How to do Cross Program Invocation
A cross program invocation, is simply put calling another program's instruction inside our program. One best example to put forth is Uniswap's swap
functionality. The UniswapV2Router
contract, calls the necessary logic to swap, and calls the ERC20
contract's transfer function to swap from one person to another. The same way, we can call a program's instruction to have multitude of purposes.
Lets have a look at our first example which is the SPL Token Program's transfer
instruction. The required accounts we would need for a transfer to happen are
- The Source Token Account (The account which we are holding our tokens)
- The Destination Token Account (The account which we would be transferring our tokens to)
- The Source Token Account's Holder (Our wallet address which we would be signing for)
use solana_program::{
account_info::{next_account_info, AccountInfo},
entrypoint,
entrypoint::ProgramResult,
msg,
program::invoke,
program_error::ProgramError,
pubkey::Pubkey,
};
use spl_token::instruction::transfer;
entrypoint!(process_instruction);
// Accounts required
/// 1. [writable] Source Token Account
/// 2. [writable] Destination Token Account
/// 3. [signer] Source Token Account holder's PubKey
/// 4. [] Token Program
pub fn process_instruction(
_program_id: &Pubkey,
accounts: &[AccountInfo],
instruction_data: &[u8],
) -> ProgramResult {
let accounts_iter = &mut accounts.iter();
// Accounts required for token transfer
// 1. Token account we hold
let source_token_account = next_account_info(accounts_iter)?;
// 2. Token account to send to
let destination_token_account = next_account_info(accounts_iter)?;
// 3. Our wallet address
let source_token_account_holder = next_account_info(accounts_iter)?;
// 4. Token Program
let token_program = next_account_info(accounts_iter)?;
// Parsing the token transfer amount from instruction data
// a. Getting the 0th to 8th index of the u8 byte array
// b. Converting the obtained non zero u8 to a proper u8 (as little endian integers)
// c. Converting the little endian integers to a u64 number
let token_transfer_amount = instruction_data
.get(..8)
.and_then(|slice| slice.try_into().ok())
.map(u64::from_le_bytes)
.ok_or(ProgramError::InvalidAccountData)?;
msg!(
"Transferring {} tokens from {} to {}",
token_transfer_amount,
source_token_account.key.to_string(),
destination_token_account.key.to_string()
);
// Creating a new TransactionInstruction
/*
Internal representation of the instruction's return value (Result<Instruction, ProgramError>)
Ok(Instruction {
program_id: *token_program_id, // PASSED FROM USER
accounts,
data,
})
*/
let transfer_tokens_instruction = transfer(
&token_program.key,
&source_token_account.key,
&destination_token_account.key,
&source_token_account_holder.key,
&[&source_token_account_holder.key],
token_transfer_amount,
)?;
let required_accounts_for_transfer = [
source_token_account.clone(),
destination_token_account.clone(),
source_token_account_holder.clone(),
];
// Passing the TransactionInstruction to send
invoke(
&transfer_tokens_instruction,
&required_accounts_for_transfer,
)?;
msg!("Transfer successful");
Ok(())
}
let token_transfer_amount = instruction_data
.get(..8)
.and_then(|slice| slice.try_into().ok())
.map(u64::from_le_bytes)
.ok_or(ProgramError::InvalidAccountData)?;
let transfer_tokens_instruction = transfer(
&token_program.key,
&source_token_account.key,
&destination_token_account.key,
&source_token_account_holder.key,
&[&source_token_account_holder.key],
token_transfer_amount,
)?;
let required_accounts_for_transfer = [
source_token_account.clone(),
destination_token_account.clone(),
source_token_account_holder.clone(),
];
invoke(
&transfer_tokens_instruction,
&required_accounts_for_transfer,
)?;
The corresponding client instruction would be as follows. For knowing the mint and token creation instructions, please refer to the full code nearby.
import {
clusterApiUrl,
Connection,
Keypair,
LAMPORTS_PER_SOL,
PublicKey,
SystemProgram,
Transaction,
TransactionInstruction,
} from "@solana/web3.js";
import {
AccountLayout,
MintLayout,
Token,
TOKEN_PROGRAM_ID,
u64,
} from "@solana/spl-token";
import * as BN from "bn.js";
// Users
const PAYER_KEYPAIR = Keypair.generate();
const RECEIVER_PUBKEY = Keypair.generate().publicKey;
// Mint and token accounts
const TOKEN_MINT_ACCOUNT = Keypair.generate();
const SOURCE_TOKEN_ACCOUNT = Keypair.generate();
const DESTINATION_TOKEN_ACCOUNT = Keypair.generate();
// Numbers
const DEFAULT_DECIMALS_COUNT = 9;
const TOKEN_TRANSFER_AMOUNT = 50 * 10 ** DEFAULT_DECIMALS_COUNT;
const TOKEN_TRANSFER_AMOUNT_BUFFER = Buffer.from(
Uint8Array.of(...new BN(TOKEN_TRANSFER_AMOUNT).toArray("le", 8))
);
(async () => {
const connection = new Connection(clusterApiUrl("devnet"), "confirmed");
const programId = new PublicKey(
"EfYK91eN3AqTwY1C34W6a33qGAtQ8HJYVhNv7cV4uMZj"
);
const mintDataSpace = MintLayout.span;
const mintRentRequired = await connection.getMinimumBalanceForRentExemption(
mintDataSpace
);
const tokenDataSpace = AccountLayout.span;
const tokenRentRequired = await connection.getMinimumBalanceForRentExemption(
tokenDataSpace
);
// Airdropping some SOL
await connection.confirmTransaction(
await connection.requestAirdrop(PAYER_KEYPAIR.publicKey, LAMPORTS_PER_SOL)
);
// Allocating space and rent for mint account
const createMintAccountIx = SystemProgram.createAccount({
fromPubkey: PAYER_KEYPAIR.publicKey,
lamports: mintRentRequired,
newAccountPubkey: TOKEN_MINT_ACCOUNT.publicKey,
programId: TOKEN_PROGRAM_ID,
space: mintDataSpace,
});
// Initializing mint with decimals and authority
const initializeMintIx = Token.createInitMintInstruction(
TOKEN_PROGRAM_ID,
TOKEN_MINT_ACCOUNT.publicKey,
DEFAULT_DECIMALS_COUNT,
PAYER_KEYPAIR.publicKey, // mintAuthority
PAYER_KEYPAIR.publicKey // freezeAuthority
);
// Allocating space and rent for source token account
const createSourceTokenAccountIx = SystemProgram.createAccount({
fromPubkey: PAYER_KEYPAIR.publicKey,
newAccountPubkey: SOURCE_TOKEN_ACCOUNT.publicKey,
lamports: tokenRentRequired,
programId: TOKEN_PROGRAM_ID,
space: tokenDataSpace,
});
// Initializing token account with mint and owner
const initializeSourceTokenAccountIx = Token.createInitAccountInstruction(
TOKEN_PROGRAM_ID,
TOKEN_MINT_ACCOUNT.publicKey,
SOURCE_TOKEN_ACCOUNT.publicKey,
PAYER_KEYPAIR.publicKey
);
// Minting tokens to the source token account for transferring later to destination account
const mintTokensIx = Token.createMintToInstruction(
TOKEN_PROGRAM_ID,
TOKEN_MINT_ACCOUNT.publicKey,
SOURCE_TOKEN_ACCOUNT.publicKey,
PAYER_KEYPAIR.publicKey,
[PAYER_KEYPAIR],
TOKEN_TRANSFER_AMOUNT
);
// Allocating space and rent for destination token account
const createDestinationTokenAccountIx = SystemProgram.createAccount({
fromPubkey: PAYER_KEYPAIR.publicKey,
newAccountPubkey: DESTINATION_TOKEN_ACCOUNT.publicKey,
lamports: tokenRentRequired,
programId: TOKEN_PROGRAM_ID,
space: tokenDataSpace,
});
// Initializing token account with mint and owner
const initializeDestinationTokenAccountIx =
Token.createInitAccountInstruction(
TOKEN_PROGRAM_ID,
TOKEN_MINT_ACCOUNT.publicKey,
DESTINATION_TOKEN_ACCOUNT.publicKey,
RECEIVER_PUBKEY
);
// Our program's CPI instruction (transfer)
const transferTokensIx = new TransactionInstruction({
programId: programId,
data: TOKEN_TRANSFER_AMOUNT_BUFFER,
keys: [
{
isSigner: false,
isWritable: true,
pubkey: SOURCE_TOKEN_ACCOUNT.publicKey,
},
{
isSigner: false,
isWritable: true,
pubkey: DESTINATION_TOKEN_ACCOUNT.publicKey,
},
{
isSigner: true,
isWritable: true,
pubkey: PAYER_KEYPAIR.publicKey,
},
{
isSigner: false,
isWritable: false,
pubkey: TOKEN_PROGRAM_ID,
},
],
});
const transaction = new Transaction();
// Adding up all the above instructions
transaction.add(
createMintAccountIx,
initializeMintIx,
createSourceTokenAccountIx,
initializeSourceTokenAccountIx,
mintTokensIx,
createDestinationTokenAccountIx,
initializeDestinationTokenAccountIx,
transferTokensIx
);
const txHash = await connection.sendTransaction(transaction, [
PAYER_KEYPAIR,
TOKEN_MINT_ACCOUNT,
SOURCE_TOKEN_ACCOUNT,
DESTINATION_TOKEN_ACCOUNT,
]);
console.log(`Token transfer CPI success: ${txHash}`);
})();
(async () => {
const connection = new Connection(clusterApiUrl("devnet"), "confirmed");
const programId = new PublicKey(
"EfYK91eN3AqTwY1C34W6a33qGAtQ8HJYVhNv7cV4uMZj"
);
const transferTokensIx = new TransactionInstruction({
programId: programId,
data: TOKEN_TRANSFER_AMOUNT_BUFFER,
keys: [
{
isSigner: false,
isWritable: true,
pubkey: SOURCE_TOKEN_ACCOUNT.publicKey,
},
{
isSigner: false,
isWritable: true,
pubkey: DESTINATION_TOKEN_ACCOUNT.publicKey,
},
{
isSigner: true,
isWritable: true,
pubkey: PAYER_KEYPAIR.publicKey,
},
{
isSigner: false,
isWritable: false,
pubkey: TOKEN_PROGRAM_ID,
},
],
});
const transaction = new Transaction();
transaction.add(transferTokensIx);
const txHash = await connection.sendTransaction(transaction, [
PAYER_KEYPAIR,
TOKEN_MINT_ACCOUNT,
SOURCE_TOKEN_ACCOUNT,
DESTINATION_TOKEN_ACCOUNT,
]);
console.log(`Token transfer CPI success: ${txHash}`);
})();
Now let's take a look at another example, which is System Program's create_account
instruction. There is a slight difference between the above mentioned instruction and this. There, we never had to pass the token_program
as one of the accounts inside the invoke
function. However, there are exceptions where you are required to pass the invoking instruction's program_id
. In our case it would be the System Program's
program_id. ("11111111111111111111111111111111"). So now the required accounts would be
- The payer account who funds the rent
- The account which is going to be created
- System Program account
use solana_program::{
account_info::{next_account_info, AccountInfo},
entrypoint,
entrypoint::ProgramResult,
msg,
program::invoke,
program_error::ProgramError,
pubkey::Pubkey,
rent::Rent,
system_instruction::create_account,
sysvar::Sysvar,
};
entrypoint!(process_instruction);
// Accounts required
/// 1. [signer, writable] Payer Account
/// 2. [signer, writable] General State Account
/// 3. [] System Program
pub fn process_instruction(
program_id: &Pubkey,
accounts: &[AccountInfo],
instruction_data: &[u8],
) -> ProgramResult {
let accounts_iter = &mut accounts.iter();
// Accounts required for token transfer
// 1. Payer account for the state account creation
let payer_account = next_account_info(accounts_iter)?;
// 2. Token account we hold
let general_state_account = next_account_info(accounts_iter)?;
// 3. System Program
let system_program = next_account_info(accounts_iter)?;
msg!(
"Creating account for {}",
general_state_account.key.to_string()
);
// Parsing the token transfer amount from instruction data
// a. Getting the 0th to 8th index of the u8 byte array
// b. Converting the obtained non zero u8 to a proper u8 (as little endian integers)
// c. Converting the little endian integers to a u64 number
let account_span = instruction_data
.get(..8)
.and_then(|slice| slice.try_into().ok())
.map(u64::from_le_bytes)
.ok_or(ProgramError::InvalidAccountData)?;
let lamports_required = (Rent::get()?).minimum_balance(account_span as usize);
// Creating a new TransactionInstruction
/*
Internal representation of the instruction's return value (Instruction)
Instruction::new_with_bincode(
system_program::id(), // NOT PASSED FROM USER
&SystemInstruction::CreateAccount {
lamports,
space,
owner: *owner,
},
account_metas,
)
*/
let create_account_instruction = create_account(
&payer_account.key,
&general_state_account.key,
lamports_required,
account_span,
program_id,
);
let required_accounts_for_create = [
payer_account.clone(),
general_state_account.clone(),
system_program.clone(),
];
// Passing the TransactionInstruction to send (with the issused program_id)
invoke(&create_account_instruction, &required_accounts_for_create)?;
msg!("Transfer successful");
Ok(())
}
let account_span = instruction_data
.get(..8)
.and_then(|slice| slice.try_into().ok())
.map(u64::from_le_bytes)
.ok_or(ProgramError::InvalidAccountData)?;
let lamports_required = (Rent::get()?).minimum_balance(account_span as usize);
let create_account_instruction = create_account(
&payer_account.key,
&general_state_account.key,
lamports_required,
account_span,
program_id,
);
let required_accounts_for_create = [
payer_account.clone(),
general_state_account.clone(),
system_program.clone(),
];
invoke(&create_account_instruction, &required_accounts_for_create)?;
The respective client side code will look as follows
import { clusterApiUrl, Connection, Keypair } from "@solana/web3.js";
import { LAMPORTS_PER_SOL, PublicKey, SystemProgram } from "@solana/web3.js";
import { Transaction, TransactionInstruction } from "@solana/web3.js";
import * as BN from "bn.js";
// Users
const PAYER_KEYPAIR = Keypair.generate();
const GENERAL_STATE_KEYPAIR = Keypair.generate();
const ACCOUNT_SPACE_BUFFER = Buffer.from(
Uint8Array.of(...new BN(100).toArray("le", 8))
);
(async () => {
const connection = new Connection(clusterApiUrl("devnet"), "confirmed");
const programId = new PublicKey(
"DkuQ5wsndkzXfgqDB6Lgf4sDjBi4gkLSak1dM5Mn2RuQ"
);
// Airdropping some SOL
await connection.confirmTransaction(
await connection.requestAirdrop(PAYER_KEYPAIR.publicKey, LAMPORTS_PER_SOL)
);
// Our program's CPI instruction (create_account)
const createAccountIx = new TransactionInstruction({
programId: programId,
data: ACCOUNT_SPACE_BUFFER,
keys: [
{
isSigner: true,
isWritable: true,
pubkey: PAYER_KEYPAIR.publicKey,
},
{
isSigner: true,
isWritable: true,
pubkey: GENERAL_STATE_KEYPAIR.publicKey,
},
{
isSigner: false,
isWritable: false,
pubkey: SystemProgram.programId,
},
],
});
const transaction = new Transaction();
// Adding up all the above instructions
transaction.add(createAccountIx);
const txHash = await connection.sendTransaction(transaction, [
PAYER_KEYPAIR,
GENERAL_STATE_KEYPAIR,
]);
console.log(`Create Account CPI Success: ${txHash}`);
})();
(async () => {
const connection = new Connection(clusterApiUrl("devnet"), "confirmed");
const programId = new PublicKey(
"DkuQ5wsndkzXfgqDB6Lgf4sDjBi4gkLSak1dM5Mn2RuQ"
);
// Airdropping some SOL
await connection.confirmTransaction(
await connection.requestAirdrop(PAYER_KEYPAIR.publicKey, LAMPORTS_PER_SOL)
);
// Our program's CPI instruction (create_account)
const creataAccountIx = new TransactionInstruction({
programId: programId,
data: ACCOUNT_SPACE_BUFFER,
keys: [
{
isSigner: true,
isWritable: true,
pubkey: PAYER_KEYPAIR.publicKey,
},
{
isSigner: true,
isWritable: true,
pubkey: GENERAL_STATE_KEYPAIR.publicKey,
},
{
isSigner: false,
isWritable: false,
pubkey: SystemProgram.programId,
},
],
});
const transaction = new Transaction();
// Adding up all the above instructions
transaction.add(creataAccountIx);
const txHash = await connection.sendTransaction(transaction, [
PAYER_KEYPAIR,
GENERAL_STATE_KEYPAIR,
]);
console.log(`Create Account CPI Success: ${txHash}`);
})();
How to create a PDA
A Program Derived Address is simply an account owned by the program, but has no private key. Instead it's signature is obtained by a set of seeds and a bump (a nonce which makes sure it's off curve). "Generating" a Program Address is different from "creating" it. One can generate a PDA using Pubkey::find_program_address
. Creating a PDA essentially means to initialize the address with space and set the state to it. A normal Keypair account can be created outside of our program and then fed to initialize it's state. Unfortunately, for PDAs, it has be created on chain, due to the nature of not being able to sign on behalf of itself. Hence we use invoke_signed
to pass the seeds of the PDA, along with the funding account's signature which results in account creation of a PDA.
use borsh::{BorshDeserialize, BorshSerialize};
use solana_program::{
account_info::{next_account_info, AccountInfo},
entrypoint,
entrypoint::ProgramResult,
program::invoke_signed,
program_error::ProgramError,
pubkey::Pubkey,
rent::Rent,
system_instruction,
sysvar::Sysvar,
};
entrypoint!(process_instruction);
#[derive(BorshSerialize, BorshDeserialize, Debug)]
pub struct HelloState {
is_initialized: bool,
}
// Accounts required
/// 1. [signer, writable] Funding account
/// 2. [writable] PDA account
/// 3. [] System Program
pub fn process_instruction(
program_id: &Pubkey,
accounts: &[AccountInfo],
instruction_data: &[u8],
) -> ProgramResult {
const ACCOUNT_DATA_LEN: usize = 1;
let accounts_iter = &mut accounts.iter();
// Getting required accounts
let funding_account = next_account_info(accounts_iter)?;
let pda_account = next_account_info(accounts_iter)?;
let system_program = next_account_info(accounts_iter)?;
// Getting PDA Bump from instruction data
let (pda_bump, _) = instruction_data
.split_first()
.ok_or(ProgramError::InvalidInstructionData)?;
// Checking if passed PDA and expected PDA are equal
let signers_seeds: &[&[u8]; 3] = &[
b"customaddress",
&funding_account.key.to_bytes(),
&[*pda_bump],
];
let pda = Pubkey::create_program_address(signers_seeds, program_id)?;
if pda.ne(&pda_account.key) {
return Err(ProgramError::InvalidAccountData);
}
// Assessing required lamports and creating transaction instruction
let lamports_required = Rent::get()?.minimum_balance(ACCOUNT_DATA_LEN);
let create_pda_account_ix = system_instruction::create_account(
&funding_account.key,
&pda_account.key,
lamports_required,
ACCOUNT_DATA_LEN.try_into().unwrap(),
&program_id,
);
// Invoking the instruction but with PDAs as additional signer
invoke_signed(
&create_pda_account_ix,
&[
funding_account.clone(),
pda_account.clone(),
system_program.clone(),
],
&[signers_seeds],
)?;
// Setting state for PDA
let mut pda_account_state = HelloState::try_from_slice(&pda_account.data.borrow())?;
pda_account_state.is_initialized = true;
pda_account_state.serialize(&mut &mut pda_account.data.borrow_mut()[..])?;
Ok(())
}
let create_pda_account_ix = system_instruction::create_account(
&funding_account.key,
&pda_account.key,
lamports_required,
ACCOUNT_DATA_LEN.try_into().unwrap(),
&program_id,
);
invoke_signed(
&create_pda_account_ix,
&[funding_account.clone(), pda_account.clone()],
&[signers_seeds],
)?;
One can send the required accounts via client as follows
import {
clusterApiUrl,
Connection,
Keypair,
LAMPORTS_PER_SOL,
PublicKey,
SystemProgram,
Transaction,
TransactionInstruction,
} from "@solana/web3.js";
const PAYER_KEYPAIR = Keypair.generate();
(async () => {
const connection = new Connection(clusterApiUrl("devnet"), "confirmed");
const programId = new PublicKey(
"6eW5nnSosr2LpkUGCdznsjRGDhVb26tLmiM1P8RV1QQp"
);
// Airdop to Payer
await connection.confirmTransaction(
await connection.requestAirdrop(PAYER_KEYPAIR.publicKey, LAMPORTS_PER_SOL)
);
const [pda, bump] = await PublicKey.findProgramAddress(
[Buffer.from("customaddress"), PAYER_KEYPAIR.publicKey.toBuffer()],
programId
);
console.log(`PDA Pubkey: ${pda.toString()}`);
const createPDAIx = new TransactionInstruction({
programId: programId,
data: Buffer.from(Uint8Array.of(bump)),
keys: [
{
isSigner: true,
isWritable: true,
pubkey: PAYER_KEYPAIR.publicKey,
},
{
isSigner: false,
isWritable: true,
pubkey: pda,
},
{
isSigner: false,
isWritable: false,
pubkey: SystemProgram.programId,
},
],
});
const transaction = new Transaction();
transaction.add(createPDAIx);
const txHash = await connection.sendTransaction(transaction, [PAYER_KEYPAIR]);
console.log(`Created PDA successfully. Tx Hash: ${txHash}`);
})();
const PAYER_KEYPAIR = Keypair.generate();
(async () => {
const connection = new Connection(clusterApiUrl("devnet"), "confirmed");
const programId = new PublicKey(
"6eW5nnSosr2LpkUGCdznsjRGDhVb26tLmiM1P8RV1QQp"
);
const [pda, bump] = await PublicKey.findProgramAddress(
[Buffer.from("customaddress"), PAYER_KEYPAIR.publicKey.toBuffer()],
programId
);
const createPDAIx = new TransactionInstruction({
programId: programId,
data: Buffer.from(Uint8Array.of(bump)),
keys: [
{
isSigner: true,
isWritable: true,
pubkey: PAYER_KEYPAIR.publicKey,
},
{
isSigner: false,
isWritable: true,
pubkey: pda,
},
{
isSigner: false,
isWritable: false,
pubkey: SystemProgram.programId,
},
],
});
const transaction = new Transaction();
transaction.add(createPDAIx);
const txHash = await connection.sendTransaction(transaction, [PAYER_KEYPAIR]);
})();
How to read accounts
Almost all instructions in Solana would require atleast 2 - 3 accounts, and they would be mentioned over the instruction handlers on what order it's expecting those set of accounts. It's fairly simple if we take advantage of the iter()
method in Rust, instead of manually indicing the accounts. The next_account_info
method basically slices the first index of the iterable and returning the account present inside the accounts array. Let's see a simple instruction which expects a bunch of accounts and requiring to parse each of them.
use borsh::{BorshDeserialize, BorshSerialize};
use solana_program::{
account_info::{next_account_info, AccountInfo},
entrypoint,
entrypoint::ProgramResult,
pubkey::Pubkey,
};
entrypoint!(process_instruction);
#[derive(BorshSerialize, BorshDeserialize, Debug)]
pub struct HelloState {
is_initialized: bool,
}
// Accounts required
/// 1. [signer] Payer
/// 2. [writable] Hello state account
/// 3. [] Rent account
/// 4. [] System Program
pub fn process_instruction(
_program_id: &Pubkey,
accounts: &[AccountInfo],
_instruction_data: &[u8],
) -> ProgramResult {
// Fetching all the accounts as a iterator (facilitating for loops and iterations)
let accounts_iter = &mut accounts.iter();
// Payer account
let payer_account = next_account_info(accounts_iter)?;
// Hello state account
let hello_state_account = next_account_info(accounts_iter)?;
// Rent account
let rent_account = next_account_info(accounts_iter)?;
// System Program
let system_program = next_account_info(accounts_iter)?;
Ok(())
}
pub fn process_instruction(
_program_id: &Pubkey,
accounts: &[AccountInfo],
_instruction_data: &[u8],
) -> ProgramResult {
// Fetching all the accounts as a iterator (facilitating for loops and iterations)
let accounts_iter = &mut accounts.iter();
// Payer account
let payer_account = next_account_info(accounts_iter)?;
// Hello state account
let hello_state_account = next_account_info(accounts_iter)?;
// Rent account
let rent_account = next_account_info(accounts_iter)?;
// System Program
let system_program = next_account_info(accounts_iter)?;
Ok(())
}
How to verify accounts
Since programs in Solana are stateless, we as a program creator have to make sure the accounts passed are validated as much as possible to avoid any malicious account entry. The basic checks one can do are
- Check if the expected signer account has actually signed
- Check if the expected state account's have been checked as writable
- Check if the expected state account's owner is the called program id
- If initializing the state for the first time, check if the account's already been initialized or not.
- Check if any cross program ids passed (whenever needed) are as expected.
A basic instruction which initializes a hero state account, but with the above mentioned checks is defined below
use borsh::{BorshDeserialize, BorshSerialize};
use solana_program::{
account_info::{next_account_info, AccountInfo},
clock::Clock,
entrypoint,
entrypoint::ProgramResult,
msg,
program_error::ProgramError,
pubkey::Pubkey,
rent::Rent,
system_program::ID as SYSTEM_PROGRAM_ID,
sysvar::Sysvar,
};
entrypoint!(process_instruction);
#[derive(BorshSerialize, BorshDeserialize, Debug)]
pub struct HelloState {
is_initialized: bool,
}
// Accounts required
/// 1. [signer] Payer
/// 2. [writable] Hello state account
/// 3. [] System Program
pub fn process_instruction(
program_id: &Pubkey,
accounts: &[AccountInfo],
_instruction_data: &[u8],
) -> ProgramResult {
let accounts_iter = &mut accounts.iter();
// Payer account
let payer_account = next_account_info(accounts_iter)?;
// Hello state account
let hello_state_account = next_account_info(accounts_iter)?;
// System Program
let system_program = next_account_info(accounts_iter)?;
let rent = Rent::get()?;
// Checking if payer account is the signer
if !payer_account.is_signer {
return Err(ProgramError::MissingRequiredSignature);
}
// Checking if hello state account is rent exempt
if !rent.is_exempt(hello_state_account.lamports(), 1) {
return Err(ProgramError::AccountNotRentExempt);
}
// Checking if hello state account is writable
if !hello_state_account.is_writable {
return Err(ProgramError::InvalidAccountData);
}
// Checking if hello state account's owner is the current program
if hello_state_account.owner.ne(&program_id) {
return Err(ProgramError::IllegalOwner);
}
// Checking if the system program is valid
if system_program.key.ne(&SYSTEM_PROGRAM_ID) {
return Err(ProgramError::IncorrectProgramId);
}
let mut hello_state = HelloState::try_from_slice(&hello_state_account.data.borrow())?;
// Checking if the state has already been initialized
if hello_state.is_initialized {
return Err(ProgramError::AccountAlreadyInitialized);
}
hello_state.is_initialized = true;
hello_state.serialize(&mut &mut hello_state_account.data.borrow_mut()[..])?;
msg!("Account initialized :)");
Ok(())
}
pub fn process_instruction(
program_id: &Pubkey,
accounts: &[AccountInfo],
_instruction_data: &[u8],
) -> ProgramResult {
let accounts_iter = &mut accounts.iter();
let payer_account = next_account_info(accounts_iter)?;
let hello_state_account = next_account_info(accounts_iter)?;
let system_program = next_account_info(accounts_iter)?;
let rent = Rent::get()?;
// Checking if payer account is the signer
if !payer_account.is_signer {
return Err(ProgramError::MissingRequiredSignature);
}
// Checking if hello state account is rent exempt
if !rent.is_exempt(hello_state_account.lamports(), 1) {
return Err(ProgramError::AccountNotRentExempt);
}
// Checking if hello state account is writable
if !hello_state_account.is_writable {
return Err(ProgramError::InvalidAccountData);
}
// Checking if hello state account's owner is the current program
if hello_state_account.owner.ne(&program_id) {
return Err(ProgramError::IllegalOwner);
}
// Checking if the system program is valid
if system_program.key.ne(&SYSTEM_PROGRAM_ID) {
return Err(ProgramError::IncorrectProgramId);
}
let mut hello_state = HelloState::try_from_slice(&hello_state_account.data.borrow())?;
// Checking if the state has already been initialized
if hello_state.is_initialized {
return Err(ProgramError::AccountAlreadyInitialized);
}
hello_state.is_initialized = true;
hello_state.serialize(&mut &mut hello_state_account.data.borrow_mut()[..])?;
msg!("Account initialized :)");
Ok(())
}
How to read multiple instructions from a transaction
Solana allows us to take a peek at all of the instructions in the current transaction. We can store them in a variable and iterate over them. We can do many things with this, like checking for suspicious transactions.
use anchor_lang::{
prelude::*,
solana_program::{
sysvar,
serialize_utils::{read_pubkey,read_u16}
}
};
declare_id!("8DJXJRV8DBFjJDYyU9cTHBVK1F1CTCi6JUBDVfyBxqsT");
#[program]
pub mod cookbook {
use super::*;
pub fn read_multiple_instruction<'info>(ctx: Context<ReadMultipleInstruction>, creator_bump: u8) -> Result<()> {
let instruction_sysvar_account = &ctx.accounts.instruction_sysvar_account;
let instruction_sysvar_account_info = instruction_sysvar_account.to_account_info();
let id = "8DJXJRV8DBFjJDYyU9cTHBVK1F1CTCi6JUBDVfyBxqsT";
let instruction_sysvar = instruction_sysvar_account_info.data.borrow();
let mut idx = 0;
let num_instructions = read_u16(&mut idx, &instruction_sysvar)
.map_err(|_| MyError::NoInstructionFound)?;
for index in 0..num_instructions {
let mut current = 2 + (index * 2) as usize;
let start = read_u16(&mut current, &instruction_sysvar).unwrap();
current = start as usize;
let num_accounts = read_u16(&mut current, &instruction_sysvar).unwrap();
current += (num_accounts as usize) * (1 + 32);
let program_id = read_pubkey(&mut current, &instruction_sysvar).unwrap();
if program_id != id
{
msg!("Transaction had ix with program id {}", program_id);
return Err(MyError::SuspiciousTransaction.into());
}
}
Ok(())
}
}
#[derive(Accounts)]
#[instruction(creator_bump:u8)]
pub struct ReadMultipleInstruction<'info> {
#[account(address = sysvar::instructions::id())]
instruction_sysvar_account: UncheckedAccount<'info>
}
#[error_code]
pub enum MyError {
#[msg("No instructions found")]
NoInstructionFound,
#[msg("Suspicious transaction detected")]
SuspiciousTransaction
}
let mut idx = 0;
let num_instructions = read_u16(&mut idx, &instruction_sysvar)
.map_err(|_| MyError::NoInstructionFound)?;
for index in 0..num_instructions {
let mut current = 2 + (index * 2) as usize;
let start = read_u16(&mut current, &instruction_sysvar).unwrap();
current = start as usize;
let num_accounts = read_u16(&mut current, &instruction_sysvar).unwrap();
current += (num_accounts as usize) * (1 + 32);
}